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1 Introduction
Molecular and archeologic evidence support that modern 
cattle reared worldwide originated from Bos taurus 
and Bos indicus which were domesticated in different 
geographic areas known as Fertile Crescent and Indus 
Valley, respectively (Pitt et al., 2019). Since domestication, 
natural and artificial selection led to the formation of 
modern cattle populations called “breed”, which possess 
differences in morphology, physiology, and behaviour 
(Orozco-terWengel et al., 2015). Although modern cattle 
breeds are phenotypically distinct, they may carry similar 
genetic patterns across the genome due to their common 
ancestors and crossbreeding history (Decker et al., 2014). 
Additionally, intensive human-driven selection practices 
improving milk and beef traits may decrease genetic 
differentiation between cattle breeds in terms of related 
genomic regions (Olšanská et al., 2020). These selection 
practices over generations may result in fixed genomic 

regions which are called selection signatures (Kukučková 
et al., 2016; Saravanan et al., 2020). Therefore, in population 
genetics, it is important to reveal genetic differentiation 
and admixture level among cattle populations. Genetic 
structure based on genetic similarity and differentiation 
may be used for genetic improvement and conservation 
programs in cattle (Makina et al., 2014). 

The genetic structure of cattle breeds has been assessed 
via different molecular techniques such as microsatellites 
(Demir and Balcioğlu, 2019), mtDNA (Di Lorenzo et al., 
2018) and SNP Arrays (Kukučková et al., 2017). These 
molecular tools are useful to genetically distinguish 
taurine cattle breeds from indicine ones (Edea et al., 
2015; van der Westhuizen et al., 2020). On the other hand, 
several studies highlighted that these molecular markers 
are limited to reveal genetic differentiation between close 
cattle breeds. For example, 21 microsatellite loci clustered 
a total of 508 individuals belonging to 11 different Indian 
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cattle breeds into six groups (Sharma et al., 2015). Similar 
results, in which cluster numbers were lower than studied 
number of breeds, were reported in sheep (Alarslan et al., 
2021), goats (Nguluma et al., 2018) and chickens (Roh et 
al., 2020) as well due to high levels of genetic admixture. 
Besides, Maudet et al. (2002) reported that accuracy of 
microsatellite markers to assign individuals to a certain 
breed could be decreased even to 6.5%. These findings 
support the idea that genetic differentiation of cattle 
breeds originating from the same ancestor and common 
evolution history requires high-density genomic data.

Fortunately, today, Next Generation Sequencing (NGS) 
technologies provide a large amount of genomic data 
for population structure analysis. Indeed, genetic 
differentiation of three rare local cattle breeds (Eastern 
Finncattle, Western Finncattle and Yakutian) raised in the 
northern Eurasian region was recently revealed by whole-
genome sequencing (Weldenegodguad et al., 2019). 
Together with advances in sequencing technologies, 
rapid developments in bioinformatics tools enable 
scientists to analyse these high-density genomic data. 

Population structure, as well as differentiation of cattle 
breeds, could be estimated by different statistical 
approaches such as Principal Component Analysis (PCA), 
Wright`s FST index (Wright, 1965), Analysis of Molecular 
Variance (AMOVA) Nei`s genetic distance (Nei, 1972), 
Linkage Disequilibrium (LD) and clustering approaches 
such as STRUCTURE and Discriminant Analysis of Principal 
Components (DAPC). Being a mathematical procedure, 
PCA benefits from orthogonal transformation to reduce 
a set of correlated variables into a set of uncorrelated 
variables. The first (PC1) and second (PC2) principal 
component explains the highest percentage of the total 
variance, respectively (Fraga et al., 2016). FST index is the 
correlation between gametes within subpopulations 
proportional to randomly selected gametes in the total 
population, indicating that it is a parameter of genetic 
differentiation between breeds across the total variation 
(Wright, 1965). Although, Wright`s FST value is still 
fundamental parameter in population genetics, several 
analogue approaches such as GST (Nei, 1973), RST (Slatkin, 
1995) and D (Jost, 2008) were proposed to analyse genetic 
differentiation among populations. These approaches 
were comprehensively reviewed elsewhere (Wang, 2012; 
Ma et al., 2015). AMOVA quantifies the total genetic 
variance across three different hierarchial levels known 
as among breeds, among individuals within breeds and 
within individuals (Excoffier et al., 1992). Nei`s genetic 
distance is a parameter to compare two populations in 
which populations coming from the same ancestors show 
lower genetic distance values (Nei, 1972). Today, based 
on Nei`s genetic distance values, several phylogenetic 
trees are drawn to visualise population structure in 

cattle. LD, caused by mutation, genetic drift and epistatic 
combinations, is defined as the non-random assortment 
of alleles at different loci (Qanbari, 2020). It is reported 
that admixing genetically distinct populations may create 
association between two unlinked loci with different allele 
frequencies (Qanbari, 2020). STRUCTURE is a Bayesian 
method to assign individuals into clusters based on 
their allele frequencies with variable burn-in period and 
Markov Chain Monte Carlo (MCMC) iterations (Pritchard 
et al., 2000). However, as highlighted by Kanduma et al. 
(2016), STRUCTURE relies on the approach in which there 
are Hardy-Weinberg and linkage equilibrium between 
all loci. These assumptions may limit using STRUCTURE 
approach, especially in the case of local cattle breeds with 
low effective population size as well as populations with 
high level of admixture. Alternatively, the DAPC approach 
was proposed by Jombart et al. (2010) to identify and 
describe clusters of genetically related individuals. The 
authors have demonstrated that compared to STRUCTURE 
analysis, the DAPC approach gives better results by 
analysing three different data sets, including simulated 
data, microsatellite data of worldwide human population 
and the data related to hemagglutinin gene sequence 
variation in seasonal influenza. 

Recently, the population structure of native Turkish 
cattle breeds has been revealed by microsatellite loci. 
No clear genetic differentiation was detected among 
studied cattle breeds in previous studies due to high 
level of admixture. Although breeders do not conduct 
systematic selection practises, it is known that native 
Turkish cattle breeds are distinctive in terms of phenotypic 
and morphological traits. The main reason for differences 
related to phenotype, morphology and adaptive traits 
among native Turkish cattle breeds, which are adapted 
to extreme environmental conditions (diseases, forage 
deficiency, high or low temperature and altitude), has 
not been clearly addressed by autosomal makers so far. 
Therefore, further studies with high-density genomic data 
coming from SNP arrays or NGS platforms are required to 
obtain better genetic diversity and population structure 
results. In this regard, this review aims (i) to give information 
on the current population structure of native Turkish cattle 
breeds and (ii) to discuss future perspectives of NGS 
studies in these cattle breeds for further studies. 

2 Current status of population structure 
 in Turkish cattle
Turkey holds six native cattle breeds, namely South 
Anatolian Red (SAR), South Anatolian Yellow (SAY), 
Anatolian Black (AB), East Anatolian Red (EAR), Zavot 
(ZAV) and Turkish Grey Steppe (TGS). Showing huge 
diversity in morphology, physiology and behaviour, these 
cattle breeds are also well-adapted to the environment 
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and local diseases (Yilmaz et al., 2012). However, their 
population size has been decreasing, since farmers 
prefer rearing high-yielding culture breeds such as 
Holstein Friesian. Besides, crossbreeding practices results 
in genetic dilution in native cattle populations (Demir 
et al., 2021). A decrease in effective population size has 
led to awareness among scientists to reveal genetic 
diversity and population structure of native Turkish cattle 
breeds to support conservation programs. In 2019, three 
different studies (Table 1) were published to reveal the 
genetic diversity and population structure of Turkish 
cattle (Demir and Balcioğlu, 2019; Öner et al., 2019; 
Özşensoy et al., 2019). Recently, the genetic diversity and 
population structure of native Turkish cattle have been 
comprehensively reviewed by Demir et al. (2021). 

Demir and Balcioğlu (2019) reported that native Turkish 
cattle breeds showed very clear separation from Holstein 
Friesian via 20 microsatellite loci. On the other hand, 
microsatellite markers failed to clearly separate all native 
Turkish cattle breeds (Demir and Balcioğlu, 2019; Öner 
et al., 2019; Özşensoy et al., 2019). Several explanations 
such as genetic admixture, sampling strategy, number of 
loci, number of individuals per breed may be proposed for 
this failure. It is obvious that there is a high level of genetic 
admixture between native and culture cattle breeds raised 
in Turkey, while some breeds (TGS and ZAV) are raised in 
limited geographic areas, which eliminates admixture 
possibilities with other native breeds. Here, we proposed 
that the main reason for the failure to distinguish Turkish 
cattle breeds clearly is due to probably used molecular 
technique, since these cattle breeds were screened via 
limited number of microsatellite markers (20–22 loci). 
Basically, used microsatellite markers revealed variations in 
a small part of the genome which does not represent the 
actual variations across the whole genome. It is believed 
that further studies are required to screen native Turkish 
cattle breeds in terms of the genetic structure via high-
density genomic data obtained from NGS. 

3 Future perspective: Proposal of NGS data 
 for further studies
NGS, allowing for parallel sequencing of massive DNA 
fragments from different individuals simultaneously, have 
revolutionized molecular studies including whole-genome 
genotyping, metagenomics, epigenetics, Genome Wide 

Association Studies (GWAS), RNA sequencing, de novo 
assembling of genomes and genome-wide structural 
variations (Gosh et al., 2018). There are several NGS 
platforms such as HiSeq, Rocher 454, Illumina GA2, Ion 
Torrent and Miseq, whereas HiSeq is the most preferred 
across the world (Gosh et al., 2018). NGS platforms require 
library preparation in which Double Digest RADseq 
(ddRADseq) is one of the efficient in terms of time and 
economic burden (Peterson et al., 2012). DNA library of 
even non-model species can be prepared by ddRADseq 
by which total DNA is restricted by two endonuclease 
combinations and specific adapters are fused followed 
by PCR amplification (Peterson et al., 2012).

Over the past few years, NGS technologies have 
facilitated sequencing studies in which the genome of 
several farm animals including cattle, pig, sheep, and 
horse have been partially or completely sequenced (Bai 
et al., 2012). First whole-genome sequencing in Bos 
taurus conducted on Hereford (beef cattle) and Holstein 
(dairy cattle) has revealed approximately 22.000 genes in 
the bovine genome (Elsik et al., 2009; Kõks et al., 2013). 
Being updated via new studies, genomic data of these 
two breeds have been served as the reference genome 
for assemly of numerous whole-genome sequencing 
studies on native cattle breeds across the world. 

Compared to SNP arrays which are currently widely used 
in farm animals, unbiased NGS techniques have several 
advantages in terms of revealing genetic diversity and 
population structure in cattle breeds as well as offering 
new opportunities for Genomic Selection (GS) and 
detection of variations related to production, reproduction 
and diseases across the entire genome (Jiang et al., 2014; 
Mrode et al., 2019; Zhang et al., 2020; Ghafar et al., 2021).

Together with basic genetic diversity parameters, NGS 
techniques offer new approaches such as Copy Number 
Variations (CNV), the discovery of selection signatures, 
novel mutations and rare genetic variants (Brøndum et 
al., 2014; Jiang et al., 2014; Zhang et al., 2020). Particularly, 
detection of novel mutations and rare variants increases 
the accuracy of revealing total genetic diversity across the 
entire genome which could be integrated to conservation 
programs of local cattle breeds. Besides, some novel 
mutations and rare variants may be directly associated 
with environmental adaptation (Leroy et al., 2016), 
which allows supporting selection strategies against 

Table 1 Summary of previous microsatellite studies on Turkish cattle

Studied Breed Loci AMOVA FCA Structure UPGMA tree NJ-tree Reference

AB, EAR and TGS 20 + + + - - Demir and Balcioğlu (2019) 

SAR, SAY, AB, EAR and TGS 22 + - + + - Öner et al. (2019)

All native breeds 20 - + + - + Özşensoy et al. (2019)
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climate change and inherited diseases. Additionally, 
NGS technologies provides high-density genomic data 
for GS in which genetic improvement of economically 
important traits such as milk and beef production in 
cattle is faster and more accurate compared to Marker 
Assisted Selection (MAS). Indeed, MAS is mainly based 
on selection of several Quantitative Trait Loci (QTL) with 
limited impact on genetic improvement (van Marle-
Köster et al., 2013), whereas NGS provides all genomic 
information, including genomic regions with both major 
and minor effects on economically important traits.

On the other hand, no study is available on native Turkish 
cattle breeds via SNP arrays and NGS technologies. 
Previous genetic diversity studies were mainly based on 
microsatellite loci in which native Turkish cattle breeds 
could not be clearly separated by limited genetic data 
which covers a small part of the genome. Fortunately, 
as mentioned above, obtaining high-density genomic 
data across the entire genome via SNP arrays and NGS 
technologies is now cheaper and feasible for livestock 
species, including cattle. In the first step, population 
structure in native Turkish cattle breeds may be detected 
by SNP arrays rather than NGS, since application and 
data manipulation of SNP arrays are easier and faster. 
Subsequently, native Turkish cattle breeds should be 
screened via NGS technologies that are more complex, 
including library preparation, assembly, and SNP calling 
process. It is believed that NGS data will not only clarify 
population structure of Turkish cattle but also allow 
scientists to conduct new approaches to detect genotype 
combinations related to environmental adaptation, 
production, reproduction and diseases. Additionally, GS 
via NGS data will facilitate selection practises in terms of 
accuracy and genetic gain in the future. As highlighted 
by Demir et al. (2021), we highly recommend that NGS 
technologies should be adopted by scientists to succeed 
these goals in native Turkish cattle breeds in the future.
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