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1 Introduction 
The main objective of population genetics is to identify 
populations and elucidate their relationships, providing 
critical insights into biological diversity and informing 
conservation strategies. Population structure, defined 
as the  distribution of genetic variation within and 
among populations, reflects evolutionary processes 
such as gene flow, genetic drift, and selection 
(Lehocká et al., 2020; Hohenlohe et al., 2020). Genetic 
structure encompasses allele frequencies, genotype 
distributions, and chromosomal variation, all 
influencing a  population‘s resilience and adaptability 
(Herbers, 2010). However, habitat fragmentation, 
population declines, and the  spread of invasive 

species can lead to a loss of genetic diversity, reducing 
fitness and limiting adaptive potential in  response to 
environmental changes (Ceballos et al., 2017). Genetic 
diversity is fundamental to a  population’s ability to 
persist in dynamic environments, making its monitoring 
essential for sustainable conservation and management 
efforts (Kasarda et al., 2020; Moravčíková and Kasarda, 
2020). Reduced variation increases susceptibility to 
inbreeding depression and local extinctions, whereas 
maintaining connectivity between populations can 
enhance genetic exchange and evolutionary potential 
(Frankham, 2018). Therefore, understanding genetic 
population structure is essential for designing effective 
conservation strategies, such as establishing habitat 

Methodological Advances in the Analysis of Genetic Population Structure: 
Implications for Biodiversity Conservation

Karolína Pálešová, Nina Moravčíková*, Radovan Kasarda
Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, 
 Institute of Nutrition and Genomic, Nitra, Slovakia

Article Details: Received: 2025-02-24      |      Accepted: 2025-03-10      |      Available online: 2025-03-31

https://doi.org/10.15414/afz.2025.28.01.28-39

                               Licensed under a Creative Commons Attribution 4.0 International License

This paper provides an overview of advances in the analysis of the genetic structure of populations, focusing on the evolution of 
statistical approaches and their applications in conservation genetics. Understanding genetic relationships among populations 
is crucial for assessing evolutionary processes such as gene flow, genetic drift, and selection, which fundamentally affect genetic 
diversity over time. Traditionally, studies relied on a limited number of genetic markers and summary statistics; however, the advent 
of high-throughput genomic technologies has dramatically enhanced both the resolution and accuracy of these analyses. Whole-
genome sequencing and dense SNP arrays now provide unprecedented insights into neutral and adaptive variations, enabling 
fine-scale detection of population subdivisions and historical demographic trends. In  parallel, the  development of advanced 
statistical models has refined genetic analyses, allowing for more precise estimations of genetic differentiation, admixture, and 
ancestral relationships. These innovations are particularly valuable in  conservation genetics, where robust assessments are 
essential for optimising strategies to maintain genetic diversity, identify populations at risk, and mitigate the effects of inbreeding 
and effective population size decline. Despite these improvements, challenges remain, including computational demands and 
the  need to account for complex demographic histories and selection pressures. Given the  continuous evolution of analytical 
techniques, selecting appropriate methods tailored to specific research questions is critical for producing reliable insights into 
population structure and effectively guiding conservation efforts. In conclusion, the continuous advancement of genomic analysis 
tools enhances the ability to study population dynamics in greater detail and supports more effective conservation planning.

Keywords: population structure, biodiversity, genomics, conservation

Review

*Corresponding Author: Nina Moravčíková, Slovak University of Agriculture in  Nitra, Faculty of Agrobiology and Food 
Resources, Institute of Nutrition and Genomics, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia 

 nina.moravcikova@uniag.sk  https://orcid.org/0000-0003-1898-8718



29

Acta fytotechn zootechn, 28, 2025(1): 28–39
http://www.acta.fapz.uniag.sk

Slovak University of Agriculture in Nitra
 

Faculty of Agrobiology and Food Resources

corridors, reinforcing small populations, or guiding 
reintroduction programs.

In addition to conservation efforts, optimising breeding 
strategies is crucial for maintaining genetic diversity and 
enhancing population resilience. Breeding programs have 
to balance genetic gain with the preservation of variability, 
ensuring long-term adaptability. Advances in  genomic 
techniques have played a  significant role in  achieving 
these goals, allowing researchers to assess population 
structure with unprecedented resolution and infer 
demographic history by examining both neutral genetic 
variation, which arises through mutation and genetic drift 
without selective pressure, adaptive genetic changes, 
which arise through natural selection acting on alleles 
that confer a  fitness advantage in  a  given environment 
(Funk et al., 2012). High-resolution genotyping methods, 
including whole-genome sequencing and SNP arrays, 
have largely replaced microsatellites due to their superior 
scalability and precision (Hauser et al., 2021; Leaché 
and Oaks, 2017). Accurately characterising population 
structure and evolutionary history relies on robust 
statistical frameworks capable of detecting patterns 
of allelic variation and demographic processes. These 
methods are fundamental for both conservation and 
breeding applications, as they provide critical insights 
into genetic drift, divergence, and admixture. Stochastic 
simulations have been used to design breeding 
strategies that maximise desired traits while conserving 
genetic diversity (Hassanpour et al., 2023). Furthermore, 
strategies such as minimising kinship and implementing 
optimal contribution selection can prevent inbreeding 
depression and maintain evolutionary potential, making 
breeding programs more effective in  supporting both 
conservation and sustainable population management 
(Li et al., 2022). However, interpreting population genetic 
patterns requires careful consideration, as confounding 
factors such as historical gene flow, selection, and 
incomplete lineage sorting can obscure underlying 
evolutionary processes (Sul et al., 2018; Moorjani and 
Hellenthal, 2023).

1.1 Estimation and Visualisation of Genetic 
 Relationships 
Sewall Wright (1921; 1923) revolutionised population 
genetics by introducing F-statistics, a  foundational 
framework in  evolutionary theory that integrates 
concepts such as genetic variance, allele identity by 
descent (IBD), and genetic diversity. Among the  indices 
derived from this framework, the  fixation index (FST) 
is the  most widely used metric for assessing genetic 
differentiation between populations (Subramanian, 
2022). FST quantifies the extent to which allele frequencies 
differ between subpopulations relative to the  total 

population, providing a  measure of genetic structure 
and divergence. Values of FST range from 0 to 1, where 0 
indicates no genetic differentiation and high gene flow, 
while 1 signifies complete genetic isolation and absence 
of gene flow (Wright, 1965). A  widely used approach 
for calculating FST is the method developed by Weir and 
Cockerham (1984), which provides a weighted estimate 
of genetic differentiation based on allele variance within 
and between populations. This method accounts for 
unequal population sizes by assigning greater weight 
to larger populations, thereby enhancing the  precision 
of the estimates. This method is implemented in various 
software tools, with the  most commonly utilised being 
PLINK (Chang et al., 2015), VCFtools (Danecek et al., 
2011) and the  StAMPP package in  the  R programming 
language (Pembleton et al., 2013), which efficiently 
handle large genomic datasets. In  contrast, GenAlEx 
(Peakall and Smouse, 2006) and Arlequin (Excoffier and 
Lischer, 2010) are more suited for smaller datasets due to 
limitations in  the  number of markers they can process. 
Given its broad applicability, FST has become a standard 
measure of genetic differentiation, widely used to 
quantify population structure and gene flow across taxa. 
Beyond its role in quantifying genetic differentiation, FST 
serves as a comparative metric in conservation genetics, 
aiding in  identifying genetic barriers and population 
connectivity (Hedgecock et al., 2007). In  evolutionary 
biology, it is instrumental in  disentangling the  relative 
contributions of selection and genetic drift to genetic 
variation (Whitlock and Guillaume, 2009). Despite its 
usefulness, FST has several limitations. It assumes Hardy-
Weinberg Equilibrium (HWE), often violated in  natural 
populations, leading to biased estimates (Guillot and 
Orlando, 2013). Additionally, FST can overestimate 
differentiation in  weakly structured populations and 
fails to account for continuous population structure 
and admixture (Putman and Carbone, 2014; Moura and 
Eurico, 2010). Its application to polyploid organisms 
is also problematic due to its inability to handle allele 
dosage effects (Liu and Meirmans, 2018).

Genetic distance metrics offer a quantitative framework 
for assessing genetic divergence, with specific methods 
tailored to different types of genetic markers and 
evolutionary contexts. Several widely utilised measures 
include the  Cavalli-Sforza and Edwards chord distance 
(1967), which is particularly effective for microsatellite 
data, and Reynolds’ genetic distance (1983), which is well-
suited for recently diverged populations. Additionally, 
Rogers’ genetic distance (1972) and Edwards’ (1971) 
are frequently employed in  phylogenetic studies to 
infer evolutionary relationships. The  selection of an 
appropriate metric depends on various factors, including 
the  genetic markers used (e.g., SNPs, microsatellites) 
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and the  underlying evolutionary model. Among these 
multiple approaches, Nei’s genetic distance (Nei, 1972) 
has become the most widely applied metric in population 
genetics as it quantifies genetic differentiation based 
on allele frequency variation. This metric is particularly 
useful for inferring evolutionary relationships and 
reconstructing historical migration patterns (Takezaki and 
Nei, 1996; Nei and Kumar, 2000). Nei‘s genetic distance is 
widely used in population genetics, as it provides reliable 
estimates even when sample sizes are unequal (Sekino 
and Hara, 2001). It has been implemented in  various 
software tools, with programs like GENEPOP (Rousset et 
al., 2008) and Arlequin (Excoffier and Lischer, 2010) suited 
for smaller datasets, while R packages such as adegenet 
(Jombart, 2008) and poppr (Kamvar, 2014) are more 
efficient for larger genomic analyses. MEGA (Kumar et al., 
2018), on the other hand, is widely used for phylogenetic 
analysis and genetic distance estimation in evolutionary 
studies. Due to its sensitivity to genetic variation, Nei’s 
genetic distance is widely used to detect evolutionary 
divergence, though it does not directly distinguish 
between neutral and adaptive changes (Fan et al., 2008; 
Nagai et al., 2007). It is also a  key tool in  phylogenetic 
analysis for reconstructing evolutionary relationships 
(Makrem et al., 2006) and is compatible with diverse 
genetic data types, including microsatellites and SNPs, 
making it versatile across research applications (Nam 
et al., 2016). Moreover, it integrates well with statistical 
frameworks like AMOVA, enhancing population structure 
analyses (Zhu et al., 2014). Although Nei’s genetic distance 
does not explicitly assume HWE, deviations from it can 
influence allele frequency estimates, potentially affecting 
result accuracy (Chakraborty, 2010). Low genetic diversity 
within samples can further reduce its accuracy, leading to 
an underestimation of differentiation (Bublyket al., 2020). 
While valuable for assessing genetic divergence, Nei’s 
distance does not directly estimate gene flow, limiting 
its effectiveness for highly dispersive species where 
migration plays a dominant role (Rosel et al., 2017).

Beyond traditional genetic distance measures, Identity 
by Descent (IBD) matrices and genomic relationship 
matrices offer alternative approaches for quantifying 
genetic relationships among individuals. IBD methods 
identify shared genomic segments inherited from 
a  common ancestor without recombination events, 
offering a  direct measure of both recent and ancient 
ancestry (Thompson, 2013). Closely related individuals 
share long IBD segments, while distant relatives exhibit 
shorter, fragmented regions that decrease over time. 
Due to shared ancestry, IBD segments persist over 
larger genomic distances in small, isolated populations, 
providing insights into demographic history, population 
structure, and bottleneck events (Browning and 

Browning, 2012). Beyond population structure, IBD-
based methods aid parent selection in  breeding and 
conservation by identifying individuals with minimal 
shared ancestry, helping to maintain genetic diversity 
and reduce inbreeding risks (Wellmann, 2019; Meuwissen 
et al., 2020). Several computational tools have been 
developed to estimate IBD matrices, each optimised for 
different data types and applications. PLINK (Chang et 
al., 2015) is widely used for IBD estimation, efficiently 
detecting shared genomic segments in  large SNP 
datasets. For high-resolution IBD detection, BEAGLE 
(Browning and Browning, 2013) provides probabilistic 
phasing and IBD inference, making it particularly 
useful for recent ancestry analysis. GERMLINE (Gusev 
et al., 2009) is another widely used tool designed for 
identifying long IBD tracts, facilitating studies of kinship 
and demographic history. While methods like PCA 
and ADMIXTURE are more commonly used for broader 
population structure analysis, IBD-based approaches 
remain valuable for revealing fine-scale stratification and 
genetic differentiation. Additionally, IBD analyses help 
mitigate confounding in association studies and improve 
genetic variance estimates (Browning and Thompson, 
2012). They also offer insights into evolutionary history, 
shedding light on past population structures and 
migration patterns (Palamara et al., 2012). However, IBD 
inference has limitations. Small sample sizes and low 
genetic diversity can reduce the accuracy and reliability 
of the  inferred IBD segments (Henden et al., 2018). 
Additionally, false positives may arise due to genotyping 
errors, population structure effects, or repetitive genomic 
regions, complicating genetic association studies 
(Browning and Thompson, 2012). 

Genomic relationship matrices (GRMs) were first 
introduced by VanRaden (2008) as a method to estimate 
genetic relatedness using dense SNP markers, providing 
an alternative to traditional pedigree-based matrices. By 
incorporating genome-wide information, GRMs capture 
both additive and non-additive genetic variances, 
offering a more comprehensive measure of relatedness, 
particularly when pedigree data is incomplete or 
unavailable (VanRaden, 2008; Su et al., 2012). Additionally, 
GRMs enhance genetic analyses by improving population 
structure control in statistical models, making genome-
wide association studies (GWAS) and heritability 
estimates more reliable (Veerkamp et al., 2011; 
Villanueva et al., 2021). They also help identify population 
substructure, revealing genetic differentiation patterns 
that support conservation and breeding programs 
(Zapata-Valenzuela et al., 2013). Several computational 
tools are widely used for constructing and analysing 
GRMs, each optimised for different applications. GCTA 
(Yang et al., 2011) is commonly used for estimating GRMs 
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and conducting heritability analysis in  large datasets. 
PLINK (Chang et al., 2015) is a versatile tool that enables 
GRM computation from genotype data while also 
supporting genome-wide association studies. ASReml 
(Gilmour et al., 2009) integrates GRMs into mixed models, 
making it particularly useful for genetic evaluations 
in  breeding programs. GRMs offer several advantages. 
They provide a  more precise measure of genetic 
relatedness, improving genetic predictions and breeding 
value estimates (Makgahlela et al., 2014). However, GRMs 
also have limitations. Their computational complexity 
poses challenges for large datasets, while insufficient 
data in smaller datasets increases the risk of overfitting 
in  predictive models (Wright et al., 2019; Aguilar et al., 
2011).

Recent advances in machine learning provide a flexible, 
data-driven approach to estimating genetic relatedness. 
Semiparametric efficient estimators incorporating 
machine learning techniques improve genetic 
covariance and correlation estimation while reducing 
bias from model misspecification. These methods 
also enable the  construction of valid confidence 
intervals, making them particularly effective for high-
dimensional genomic data (Guo et al., 2023). Supervised 
learning techniques, including decision tree-based 
classifiers, have demonstrated high reliability in genetic 
classification tasks, particularly in  distinguishing closely 
related populations (Kukučková et al., 2018). Among such 
approaches, ensemble learning methods like Random 
Forest (RF) (Breiman, 2001) have been widely used for 
genetic data analysis, leveraging multiple decision 
trees to enhance predictive accuracy and reduce 
variance in  tree-based models (Kasarda et al., 2023). 
While RF is effective for feature selection and genotype-
phenotype association studies, recent methodological 
developments have expanded beyond tree-based 
models to incorporate information-theoretic measures 
for genetic distance estimation. Mutual Information 
and Entropy H (MIH) employs an information matrix 
(IM) derived from genetic data, which encapsulates 
both positional heterogeneities, quantified through 
Shannon entropy, and coordinated substitutions 
among loci, assessed via mutual information (Campo et 
al., 2023). Mutual information measures the  extent to 
which knowledge of one variable reduces uncertainty 
about another, making it a  powerful tool for detecting 
complex dependencies between genetic sites. Unlike 
traditional correlation metrics, it does not assume 
linearity or other specific forms of dependence, allowing 
for the identification of both direct and indirect genetic 
interactions (Faith et al., 2007). Given its ability to capture 
nonlinear associations, mutual information is widely 
applicable in  inferring various interaction networks, 

including biological, chemical, and social systems. 
In  such networks, a  high mutual information value 
indicates strong interdependence between components, 
whereas a  value approaching zero suggests little to 
no relationship (Villaverde et al., 2014). However, MIH 
has notable limitations, including high computational 
complexity due to large-scale mutual information 
calculations and sensitivity to sequence length and 
data quality. Additionally, it does not directly measure 
allele frequency differences, making interpretation less 
intuitive for population geneticists. The  method also 
requires large sample sizes to ensure statistical power, 
as small datasets may not provide robust entropy and 
mutual information estimates. Mutual Information 
Analyzer (MIA) (Lichtenstein et al., 2015) is a valuable tool 
for MIH analysis, but its suitability depends on the dataset 
and research objectives. 

Genetic distance measures can be visualised using 
phylogenetic trees and network-based methods 
to interpret population structure and evolutionary 
relationships. These approaches reveal divergence 
patterns, clustering, and genetic connectivity, aiding 
in  fine-scale genetic analysis. The  Neighbor-Joining 
(NJ) method, a  widely used distance-based technique, 
reconstructs evolutionary history by minimising total 
branch length without assuming a strict molecular clock 
(Saitou and Nei, 1987). NJ trees are particularly useful for 
inferring population relationships from genetic distance 
matrices such as Nei’s genetic distance. However, while 
phylogenetic trees depict hierarchical relationships, 
network-based visualisations offer a  more nuanced 
perspective, especially in  populations exhibiting high 
levels of gene flow and admixture. Methods such as 
NetView and split decomposition networks capture 
reticulations and complex evolutionary histories, making 
them valuable for analysing fine-scale population 
structure (Morrison, 2010; Neuditschko et al., 2012). 
Applied to large genomic datasets, these approaches 
complement tree-based methods in population genetics 
studies (Al-Breiki et al., 2018). Beyond distance-based 
techniques, model-based approaches such as TreeMix 
provide an alternative for inferring population splits 
and mixtures from genome-wide allele frequency data 
(Pickrell and Pritchard, 2012). This software has been 
shown to accurately reconstruct known relationships 
among populations while identifying previously 
unrecognized connections, making it a  powerful tool 
for clustering individuals into genetically homogeneous 
groups. However, TreeMix may not fully capture recent 
admixture events or complex demographic histories, 
where continuous patterns of genetic variation 
challenge traditional discrete models. To enhance 
population structure analyses, visualization techniques 
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are often integrated with clustering methods like 
Principal Components Analysis (PCA) and model-based 
clustering approaches, providing a more comprehensive 
understanding of genetic relationships (Steinig et al., 
2016). Advances in  population genetics software have 
further refined visualization methodologies, increasing 
analytical precision. The  latest version of STRAF 2 
integrates multidimensional scaling (MDS) for population 
visualization and includes an R package, offering both 
interactive and offline tools for efficient genetic structure 
analysis (Gouy and Zieger, 2025).

Traditional methods for visualising genetic relationships, 
such as NetView and NJ trees, rely on precomputed 
genetic distance matrices, typically derived from FST 
or Nei‘s genetic distance. However, these approaches 
assume discrete population boundaries, which may not 
accurately represent continuous patterns of genetic 
variation. To address this limitation, Smith et al. (2024) 
developed a  deep neural network framework that 
utilises geo-referenced SNP data to generate spatially 
heterogeneous maps of population density and 
dispersal rates. Trained on simulated datasets, mapNN 
integrates genotypic data and sampling locations to 
infer demographic parameters, offering a  more precise 
representation of population structure. By simultaneously 
estimating both the magnitude and spatial variation of 
dispersal and density, this approach enhances fine-scale 
population visualisation and complements network-
based methods like NetView. Its ability to incorporate 
both genetic and geographic information makes it 
particularly valuable for studying species with high 
gene flow, isolation-by-distance patterns, or complex 
population connectivity.

1.2 Admixture Analysis and Model-Based Clustering 
Admixture refers to the  genetic integration of two or 
more previously isolated populations, resulting in  new 
genetic combinations. This process is a  major driver of 
population genetic structure, offering critical insights into 
historical gene flow, demographic history, and patterns 
of genetic diversity (vonHoldt et al., 2011). Moreover, 
it is one of the  most rapid evolutionary mechanisms, 
capable of significantly altering the genetic composition 
of populations within a  few generations (Korunes and 
Goldberg, 2021). The  detection and quantification of 
admixture are typically conducted using model-based 
clustering approaches, which estimate individual ancestry 
proportions based on multilocus genotype data (Lawson 
et al., 2018). These methods have become indispensable 
for inferring population structure and reconstructing 
genetic relationships, with clustering algorithms widely 
applied to genetic ancestry characterisation. Pritchard 
et al. (2000) introduced a Bayesian clustering algorithm, 

implemented in  the  STRUCTURE software, for defining 
genetic populations and assigning individuals to inferred 
clusters. While highly accurate, its computational 
intensity limits its use for large datasets. To improve 
scalability, fastSTRUCTURE (Raj et al., 2014), FRAPPE (Tang 
et al., 2005), and ADMIXTURE (Alexander et al., 2009) 
were developed, employing a  similar inference model 
but optimised for large-scale genomic data. Despite its 
widespread use in population genetics, admixture analysis 
has inherent limitations that can affect the  accuracy 
of inferred population structure. Bayesian clustering 
methods, such as those implemented in STRUCTURE, are 
computationally intensive, requiring extensive iterations 
for convergence. This makes them impractical for large 
genomic datasets without high-performance computing 
resources (Wang, 2022). A key drawback of model-based 
admixture analysis methods, such as STRUCTURE and 
ADMIXTURE, is their reliance on a  predefined number 
of ancestral populations (K); if misestimated, this can 
introduce bias and misrepresent genetic structure, 
particularly in  populations with complex admixture 
histories (Gopalan et al., 2022). Nevertheless, STRUCTURE 
remains favoured for small-scale analyses (Lawson et 
al., 2018). To improve the  interpretation of STRUCTURE 
and ADMIXTURE outputs, several tools facilitate result 
processing and visualization. CLUMPP, developed by 
Jakobsson and Rosenberg (2007), addresses label 
switching and multimodality issues by aligning 
multiple replicate analyses, ensuring consistent cluster 
assignments. Similarly, DISTRUCT (Rosenberg, 2004), 
provides clear graphical representations of individual 
membership coefficients, making population structure 
patterns easier to interpret. 

Wang (2024) developed PopCluster, a  likelihood-based 
framework that integrates mixture and admixture 
models for high-resolution population analyses. This 
method demonstrates superior accuracy, particularly 
when analysing weakly differentiated populations, 
intricate population structures, or datasets with small or 
highly unbalanced sample sizes. Additionally, by utilising 
parallel computing frameworks such as MPI (Message 
Passing Interface) and OpenMP (Open Multi-Processing), 
PopCluster enhances computational efficiency, making 
it well-suited for large-scale genomic datasets. Its 
capacity to handle both multiallelic markers (e.g., 
microsatellites) and millions of biallelic markers (e.g., 
SNPs) further underscores its versatility in  population 
genetics (Wang, 2022). Another major advancement 
in  admixture analysis is Neural ADMIXTURE, introduced 
by Dominguez Mantes et al. (2023), a  deep learning-
based autoencoder designed to improve the  efficiency 
of genomic clustering. Unlike traditional methods, which 
require extensive computational resources, Neural 
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ADMIXTURE leverages neural networks to achieve orders-
of-magnitude speedup while maintaining high accuracy. 
Its multi-head architecture enables the  simultaneous 
inference of multiple clustering solutions, reducing 
the need for separate runs at different values of K. This 
makes it particularly suitable for large-scale genomic 
datasets, such as biobanks, where traditional approaches 
become computationally prohibitive (Bycroft et al., 2018). 
Unlike statistical approaches, deep learning models can 
infer population structure without strong parametric 
assumptions, making them more adaptable to complex 
demographic histories and continuous genetic variation.

While clustering methods directly infer population 
structure, simulations serve as a  complementary 
approach by generating artificial genetic data to test 
the  accuracy and robustness of these inferences. One 
example is the  Gametes Simulator, which generates 
multilocus genotypes based on observed allele 
frequencies and is particularly useful for analysing genetic 
structure in outbreeding diploid species (Porta et al., 2020). 
However, its reliance on accurate allele frequency data can 
be a limitation. Another useful tool is ADAM (Pedersen et 
al., 2009), a  stochastic simulation program designed to 
model selective breeding schemes in animal populations. 
By simulating genetic changes under different selection 
strategies, mating designs, and population structures, 
ADAM provides valuable insights into how breeding 
practices influence genetic variation and population 
structure over time. Similarly, DYMEX (Li et al., 2015) 
models population dynamics in  ecological contexts, 
enabling researchers to assess environmental influences 
on population structure over time. While primarily applied 
in  ecological and conservation studies, its use varies 
depending on specific modelling needs. SFS_CODE (Sinha 
et al., 2011) is a  forward-time simulation tool designed 
for modelling genetic data under complex selection and 
demographic scenarios, allowing researchers to study 
selective sweeps, evolutionary pressures, and the effects 
of mutation and recombination.

1.3 Multivariate Techniques
Principal component analysis (PCA) and Discriminant 
Analysis of Principal Components (DAPC) are widely 
used multivariate methods in  population genetics 
for assessing genetic structure and variation with 
predefined population assignments. PCA reduces 
high-dimensional genetic data into a  smaller set 
of uncorrelated variables (principal components), 
maximising the  variance captured from the  dataset. 
DAPC, in  contrast, combines PCA with discriminant 
analysis (DA) to optimise population differentiation by 
maximising between-group variation while minimising 
within-group variation, making it particularly effective 

for assigning individuals to populations (Jombart et al., 
2010; Karamizadeh et al., 2013). These methods help 
visualise population structure, identify genetic clustering, 
and detect admixture patterns, with PCA being an 
unsupervised approach, while DAPC requires predefined 
groups (Patterson et al., 2006; Qin et al., 2021). A  key 
mathematical foundation of PCA lies in eigenvalues and 
eigenvectors, which are derived from the  covariance 
matrix of the dataset. Eigenvalues represent the amount 
of variance explained by each principal component, with 
higher eigenvalues indicating components that capture 
more genetic variation. Eigenvectors, on the other hand, 
define the  directions in  which the  data points vary 
the  most, forming the  principal axes of the  PCA plot 
(Jolliffe and Kadima, 2016). Building on these principles, 
DAPC maximises between-group variance, enhancing its 
effectiveness for classifying individuals into populations 
(Chhotaray et al., 2019). PCA and DAPC can be performed 
using adegenet (Jombart, 2008), which handles datasets 
of various sizes, or GenAlEx (Peakall and Smouse, 2012), 
which is more commonly used for smaller datasets. For 
large-scale genomic data, PLINK efficiently computes 
PCA on genome-wide SNPs (Chang et al., 2015), while 
TASSEL integrates PCA for GWAS applications (Bradbury 
et al., 2007). However, PCA is sensitive to missing data 
and outliers, which can distort population clustering 
(Serneels and Verdonck, 2008), and DAPC requires 
predefined groups, making it less effective for detecting 
unknown structures (Miller et al., 2020). Additionally, 
PCA may fail to distinguish populations with high gene 
flow, as it only captures dominant variance components 
(Elhaik, 2022), while DAPC can be computationally 
intensive for large datasets due to the multiple steps of 
PCA transformation and discriminant function selection 
(Thia, 2023). To improve population structure and 
genetic relatedness analysis, PSReliP integrates PCA, 
multidimensional scaling (MDS), and clustering methods, 
providing a  comprehensive framework for multivariate 
genetic analysis. Combining PLINK-based computations 
with an interactive Shiny web interface, enables 
dynamic visualisations, enhancing accessibility. These 
features make PSReliP a  valuable tool for interpreting 
genetic variation in  GWAS, genomic selection, and 
evolutionary studies, strengthening population genetics 
methodologies (Solovieva and Sakai, 2023).

A recent advancement in  multivariate methods for 
population structure analysis is Population-Based 
Hierarchical Non-negative Matrix Factorization 
(PHNMF), introduced by Ding et al. (2022). PHNMF 
extends Hierarchical Non-negative Matrix Factorization 
(HNMF) to identify hierarchical population structures 
in  complex genomic datasets. Unlike conventional 
techniques such as Principal Component Analysis (PCA) 
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Table 1 Overview of commonly used software for population structure analysis

Category Software Author(s) Operation system

Genetic distance and 
relatedness estimation

VCFtools Danecek et al., 2011 Linux, macOS

StAMPP Pembleton et al., 2013 Windows, macOS, Linux (R package)

GenAlEx Peakall and Smouse, 2006 Windows, macOS (Excel add-on)

Arlequin Excoffier and Lischer, 2010 Windows, Linux (GUI for Windows, 
command-line for Linux)

GENEPOP Rousset, 2008 Windows, macOS, Linux (Web-based)

PLINK Chang et al., 2015 Windows, macOS, Linux

MEGA Kumar et al., 2018 Windows, Linux

GCTA Yang et al., 2011 Windows, Linux

ASReml Gilmour et al., 2009 Windows, Linux

BEAGLE Browning and Browning, 
2013 Windows, macOS, Linux (Java-based)

GERMLINE Gusev et al., 2009 macOS, Linux

adegenet Jombart, 2008 Windows, macOS, Linux (R package)

poppr Kamvar et al., 2014 Windows, macOS, Linux (R package)

Genetic relationships 
visualization

TreeMix Pickrell and Pritchard, 2012 macOS, Linux

NetView Neuditschko et al., 2012 Windows, macOS, Linux 
(Python-based)

straf Gouy and Zieger, 2025 Windows, macOS, Linux (R package)

mapNN Smith et al., 2024 Linux

Admixture analysis

STRUCTURE Pritchard et al., 2000 Windows, macOS, Linux

ADMIXTURE Alexander et al., 2009 Linux, macOS

fastSTRUCTURE Raj et al., 2014 Linux, macOS

FRAPPE Tang et al., 2005 Linux

PopCluster Wang, 2024 Windows, macOS, Linux (R package)

Neural ADMIXTURE Dominguez Mantes et al., 
2023 Linux, macOS (Python-based)

Interpretation of structure 
and admixture outputs

CLUMPP Jakobsson and Rosenberg, 
2007 Windows, macOS, Linux

DISTRUCT Rosenberg, 2004 Windows, macOS, Linux

Multivariate statistical 
approaches

TASSEL Bradbury et al., 2007 Windows, macOS, Linux (Java-based)

PSReliP Solovieva and Sakai, 2023 Linux

PHNMF Ding et al., 2022 Windows, macOS, Linux 
(Python-based)

Simulations

Gametes Simulator Porta et al., 2020 Windows, macOS, Linux 
(Python-based)

ADAM Pedersen et al., 2009 Windows (C++-based)

DYMEX Li et al., 2015 Windows

SFS_CODE Sinha et al., 2011 Linux, macOS

Information-theoretic 
approaches MIA Lichtenstein et al., 2015 Windows (Python-based)
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and Discriminant Analysis of Principal Components 
(DAPC), which rely on linear transformations, PHNMF 
employs non-negative matrix factorisation to uncover 
latent population structures based on feature similarity. 
This approach automatically assigns subpopulations 
while preserving a  hierarchical clustering framework, 
enhancing both interpretability and scalability for large 
genomic datasets. A  key advantage of PHNMF is its 
ability to analyse large-scale genomic data with minimal 
assumptions about underlying genetic distributions, 
making it particularly effective for genetic population 
structure analysis. Numerical evaluations demonstrate 
that PHNMF accurately reconstructs latent hierarchical 
subpopulations, outperforming established methods 
such as Latent Class Analysis (LCA) and Latent Profile 
Analysis (LPA). LCA is a probabilistic modelling approach 
used to infer latent categorical groupings under 
the  assumption of conditional independence among 
variables within each group (Haughton et al., 2009; 
Linzer and Lewis, 2011). LPA extends this framework to 
continuous data, representing a  form of multivariate 
mixture modelling that maintains the same conditional 
independence assumption (Peugh and Fan, 2013; 
Oberski, 2016). Despite its advantages, PHNMF has some 
limitations. It is computationally intensive, requiring 
substantial memory for large datasets. Additionally, it is 
sensitive to data sparsity, which can affect accuracy when 
dealing with missing values or low-frequency variants.

An overview of commonly used software for analysing 
population structure is presented in Table 1. Many widely 
used tools, such as StAMPP, PLINK, TASSEL, and adegenet, 
function across Windows, macOS, and Linux due to 
their implementation in R or Java. MEGA is available for 
Windows, macOS, and Linux, while straf, designed for 
forensic genetics, is available as an R package. However, 
some tools have platform-specific requirements. PSReliP is 
restricted to Linux due to its reliance on bash shell scripts, 
while ASReml is compatible with Windows, macOS, and 
Linux. FRAPPE is designed for Linux, whereas ADMIXTURE 
supports both Linux and macOS but lacks a  native 
Windows version. Software for IBD and kinship analysis, 
such as BEAGLE, is Java-based and cross-platform, while 
GERMLINE primarily supports Linux and macOS. Network-
based and phylogenetic visualization tools, including 
NetView and TreeMix, are compatible with Linux and 
macOS, whereas mapNN, a deep learning-based tool for 
spatial demographic inference, is primarily available for 
Linux. Admixture and model-based clustering programs, 
including STRUCTURE, fastSTRUCTURE, PopCluster, and 
Neural ADMIXTURE, provide genetic ancestry inference, 
with most being optimized for Linux and macOS. Post-
processing and visualization tools such as CLUMPP 
and DISTRUCT assist in  interpreting clustering results 

and are compatible with Windows, macOS, and Linux. 
Software designed for multivariate and latent structure 
analysis, such as PHNMF, supports Windows, macOS, and 
Linux. For population genetic simulations, these tools 
facilitate forward-time and coalescent-based modelling: 
ADAM and DYMEX are available for Windows, Gametes 
Simulator supports Windows, macOS, and Linux, while 
SFS_CODE is restricted to Linux and macOS.

2 Conclusions 
The continuous advancement of statistical methodologies 
has significantly improved the  resolution and accuracy 
of genetic population structure analyses. By integrating 
high-throughput genomic data with sophisticated 
analytical approaches, researchers can now detect 
fine-scale genetic patterns, infer demographic history, 
and assess evolutionary processes more precisely. 
These improvements have profound implications 
for conservation genetics, where robust population 
assessments are essential for maintaining genetic 
diversity and mitigating inbreeding risks. However, 
challenges remain, including computational limitations 
and the  need for methods that account for complex 
demographic histories and selection pressures. Future 
research should focus on refining these analytical tools, 
with an emphasis on incorporating artificial intelligence 
and machine learning to enhance automation, scalability, 
and accuracy in genetic data analysis. Such innovations 
will improve the  efficiency and reliability of genetic 
analysis, ultimately strengthening evidence-based 
strategies for biodiversity conservation. 
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